73 research outputs found

    The role of telehealth to assist in-home tdcs: opportunities, promising results and acceptability

    Get PDF
    Transcranial direct current stimulation (tDCS) has shown great promise as a neuromodulatory intervention capable of improving behavioral outcomes in a range of neurological and psychiatric populations. Evidence indicates that the neuromodulatory effect of stimulation may be cumulative, with greater improvements in behavior observed following multiple treatment sessions. However, the requirement to attend clinical or research departments for multiple treatment sessions may present a barrier for many people, particularly those with greater disability or living remotely. The portability of tDCS suggests that in-home stimulation may become an avenue for further investigation. However, safe and effective use of tDCS by a participant within their home requires a form of monitoring. This review discusses how telehealth may provide real-time visual monitoring to ensure correct tDCS set-up and adherence to stimulation protocols, manage technical issues and monitor adverse events. The combination of telehealth to supplement in-home tDCS use has potential to transform the way tDCS is delivered.Brenton Hordacr

    Investigating the impact of feedback update interval on the efficacy of restorative brain–computer interfaces

    Get PDF
    Restorative brain-computer interfaces (BCIs) have been proposed to enhance stroke rehabilitation. Restorative BCIs are able to close the sensorimotor loop by rewarding motor imagery (MI) with sensory feedback. Despite the promising results from early studies, reaching clinically significant outcomes in a timely fashion is yet to be achieved. This lack of efficacy may be due to suboptimal feedback provision. To the best of our knowledge, the optimal feedback update interval (FUI) during MI remains unexplored. There is evidence that sensory feedback disinhibits the motor cortex. Thus, in this study, we explore how shorter than usual FUIs affect behavioural and neurophysiological measures following BCI training for stroke patients using a single-case proof-of-principle study design. The action research arm test was used as the primary behavioural measure and showed a clinically significant increase (36%) over the course of training. The neurophysiological measures including motor evoked potentials and maximum voluntary contraction showed distinctive changes in early and late phases of BCI training. Thus, this preliminary study may pave the way for running larger studies to further investigate the effect of FUI magnitude on the efficacy of restorative BCIs. It may also elucidate the role of early and late phases of motor learning along the course of BCI training

    Intracortical inhibition is modulated by phase of prosthetic rehabilitation in transtibial amputees

    Get PDF
    © 2015 Hordacre, Bradnam, Barr, Patritti and Crotty. Reorganization of primary motor cortex (M1) is well-described in long-term lower limb amputees. In contrast cortical reorganization during the rehabilitation period after amputation is poorly understood. Thirteen transtibial amputees and 13 gender matched control participants of similar age were recruited. Transcranial magnetic stimulation was used to assess corticomotor and intracortical excitability of M1 bilaterally. Neurophysiological assessments were conducted at admission, prosthetic casting, first walk and discharge. Gait variability at discharge was assessed as a functional measure. Compared to controls, amputees had reduced short-latency intracortical inhibition (SICI) for the ipsilateral M1 at admission (p = 0.01). Analysis across rehabilitation revealed SICI was reduced for the contralateral M1 at first walk compared to discharge (p = 0.003). For the ipsilateral M1 both short and long-latency intracortical inhibition were reduced at admission (p < 0.05) and prosthetic casting (p < 0.02). Analysis of the neurophysiology and gait function revealed several interesting relationships. For the contralateral M1, reduced inhibition at admission (p = 0.04) and first walk (p = 0.05) was associated with better gait function. For the ipsilateral M1, reduced inhibition at discharge (p = 0.05) was associated with poor gait function. This study characterized intracortical excitability in rehabilitating amputees. A dichotomous relationship between reduced intracortical inhibition for each M1 and gait function was observed at different times. Intracortical inhibition may be an appropriate cortical biomarker of gait function in lower limb amputees during rehabilitation, but requires further investigation. Understanding M1 intracortical excitability of amputees undertaking prosthetic rehabilitation provides insight into brain reorganization in the sub-acute post-amputation period and may guide future studies seeking to improve rehabilitation outcomes

    Transcranial direct current stimulation to facilitate lower limb recovery following stroke: current evidence and future directions

    Get PDF
    Stroke remains a global leading cause of disability. Novel treatment approaches are required to alleviate impairment and promote greater functional recovery. One potential candidate is transcranial direct current stimulation (tDCS), which is thought to non-invasively promote neuroplasticity within the human cortex by transiently altering the resting membrane potential of cortical neurons. To date, much work involving tDCS has focused on upper limb recovery following stroke. However, lower limb rehabilitation is important for regaining mobility, balance, and independence and could equally benefit from tDCS. The purpose of this review is to discuss tDCS as a technique to modulate brain activity and promote recovery of lower limb function following stroke. Preliminary evidence from both healthy adults and stroke survivors indicates that tDCS is a promising intervention to support recovery of lower limb function. Studies provide some indication of both behavioral and physiological changes in brain activity following tDCS. However, much work still remains to be performed to demonstrate the clinical potential of this neuromodulatory intervention. Future studies should consider treatment targets based on individual lesion characteristics, stage of recovery (acute vs. chronic), and residual white matter integrity while accounting for known determinants and biomarkers of tDCS response.Samuel Gowan, Brenton Hordacr

    An investigation of cortical neuroplasticity following stroke in adults: is there evidence for a critical window for rehabilitation?

    Get PDF
    Evidence in animal stroke models suggests that neuroplasticity takes place maximally in a specific time window after an ischaemic lesion, which may coincide with the optimal time to intervene with rehabilitation. The aim of this study is to investigate neurophysiological evidence for a "critical window" of enhanced neuroplasticity in patients following ischaemic stroke, and establish its duration. We will also investigate changes in cortical inhibition following stroke, and the influence this has on functional recovery

    The unusual case of dental pain with sham repetitive transcranial magnetic stimulation: a benign idiosyncrasy or diagnostic opportunity?

    Get PDF
    Abstract not availableBrenton Hordacre, Kristina Comacchio, G. Lorimer Mosele

    Are sarcopenia and cognitive dysfunction comorbid after stroke in the context of brain–muscle crosstalk?

    Get PDF
    Stroke is a leading cause of death and disability and is responsible for a significant economic burden. Sarcopenia and cognitive dysfunction are common consequences of stroke, but there is less awareness of the concurrency of these conditions. In addition, few reviews are available to guide clinicians and researchers on how to approach sarcopenia and cognitive dysfunction as comorbidities after stroke, including how to assess and manage them and implement interventions to improve health outcomes. This review synthesises current knowledge about the relationship between post-stroke sarcopenia and cognitive dysfunction, including the physiological pathways, assessment tools, and interventions involved.Sophia X. Sui, Brenton Hordacre and Julie A. Pasc

    Strategies to implement and monitor in-home transcranial electrical stimulation in neurological and psychiatric patient populations: a systematic review

    Get PDF
    BACKGROUND:Transcranial electrical stimulation is a promising technique to facilitate behavioural improvements in neurological and psychiatric populations. Recently there has been interest in remote delivery of stimulation within a participant's home. OBJECTIVE:The purpose of this review is to identify strategies employed to implement and monitor in-home stimulation and identify whether these approaches are associated with protocol adherence, adverse events and patient perspectives. METHODS:MEDLINE, Embase Classic + Embase, Emcare and PsycINFO databases and clinical trial registries were searched to identify studies which reported primary data for any type of transcranial electrical stimulation applied as a home-based treatment. RESULTS:Nineteen published studies from unique trials and ten on-going trials were included. For published data, internal validity was assessed with the Cochrane risk of bias assessment tool with most studies exhibiting a high level of bias possibly reflecting the preliminary nature of current work. Several different strategies were employed to prepare the participant, deliver and monitor the in-home transcranial electrical stimulation. The use of real time videoconferencing to monitor in-home transcranial electrical stimulation appeared to be associated with higher levels of compliance with the stimulation protocol and greater participant satisfaction. There were no severe adverse events associated with in-home stimulation. CONCLUSIONS:Delivery of transcranial electrical stimulation within a person's home offers many potential benefits and appears acceptable and safe provided appropriate preparation and monitoring is provided. Future in-home transcranial electrical stimulation studies should use real-time videoconferencing as one of the approaches to facilitate delivery of this potentially beneficial treatment.Nandini Sandran, Susan Hillier and Brenton Hordacr

    Does sensory retraining improve sensation and sensorimotor function following stroke: a systematic review and meta-analysis

    Get PDF
    Background: Reduced sensation is experienced by one in two individuals following stroke, impacting both the ability to function independently and overall quality of life. Repetitive activation of sensory input using active and passive sensory-based interventions have been shown to enhance adaptive motor cortical plasticity, indicating a potential mechanism which may mediate recovery. However, rehabilitation specifically focusing on somatosensory function receives little attention. Objectives: To investigate sensory-based interventions reported in the literature and determine the effectiveness to improve sensation and sensorimotor function of individuals following stroke. Methods: Electronic databases and trial registries were searched from inception until November 2018, in addition to hand searching systematic reviews. Study selection included randomized controlled trials for adults of any stroke type with an upper and/or lower limb sensorimotor impairment. Participants all received a sensory-based intervention designed to improve activity levels or impairment, which could be compared with usual care, sham, or another intervention. The primary outcomes were change in activity levels related to sensorimotor function. Secondary outcomes were measures of impairment, participation or quality of life. Results: A total of 38 study trials were included (n = 1,093 participants); 29 explored passive sensory training (somatosensory; peripheral nerve; afferent; thermal; sensory amplitude electrical stimulation), 6 active (sensory discrimination; perceptual learning; sensory retraining) and 3 hybrid (haptic-based augmented reality; sensory-based feedback devices). Meta-analyses (13 comparisons; 385 participants) demonstrated a moderate effect in favor of passive sensory training on improving a range of upper and lower limb activity measures following stroke. Narrative syntheses were completed for studies unable to be pooled due to heterogeneity of measures or insufficient data, evidence for active sensory training is limited however does show promise in improving sensorimotor function following stroke. Conclusions: Findings from the meta-analyses and single studies highlight some support for the effectiveness of passive sensory training in relation to sensory impairment and motor function. However, evidence for active sensory training continues to be limited. Further high-quality research with rigorous methods (adequately powered with consistent outcome measures) is required to determine the effectiveness of sensory retraining in stroke rehabilitation, particularly for active sensory training.Ines Serrada, Brenton Hordacre and Susan L. Hillie
    • …
    corecore